Find $\frac{d y}{d x}$ :
$y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right),-\frac{1}{\sqrt{3}}
The given relationship is $y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
$y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
$\Rightarrow \tan y=\frac{3 x-x^{3}}{1-3 x^{2}}$ ...(1)
It is known that, $\tan y=\frac{3 \tan \frac{y}{3}-\tan ^{3} \frac{y}{3}}{1-3 \tan ^{2} \frac{y}{3}}$ ...(2)
Comparing equations (1) and (2), we obtain
$x=\tan \frac{y}{3}$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(x)=\frac{d}{d x}\left(\tan \frac{y}{3}\right)$
$\Rightarrow 1=\sec ^{2} \frac{y}{3} \cdot \frac{d}{d x}\left(\frac{y}{3}\right)$
$\Rightarrow 1=\sec ^{2} \frac{y}{3} \cdot \frac{1}{3} \cdot \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{3}{\sec ^{2} \frac{y}{2}}=\frac{3}{1+\tan ^{2} \frac{y}{2}}$
$\therefore \frac{d y}{d x}=\frac{3}{1+x^{2}}$