Question:
Find $\frac{d y}{d x}$ :
$y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
Solution:
We have,
$y=\sin ^{-1}\left[\frac{2 x}{1+x^{2}}\right]$
put $x=\tan \theta \Rightarrow \theta=\tan ^{-1} x$
Now,
$y=\sin ^{-1}\left[\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right]$
$\Rightarrow y=\sin ^{-1}(\sin 2 \theta), \quad\left(\right.$ as $\left.\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow y=2 \theta, \quad\left(\right.$ as $\left.\sin ^{-1}(\sin x)=x\right)$
$\Rightarrow y=2 \tan ^{-1} x$
$\Rightarrow \frac{d y}{d x}=2 \times \frac{1}{1+x^{2}},\left\{\right.$ because $\left.\frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}}\right\}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{1+x^{2}}$