Question:
Find:
(i) 10th term of the A.P. 1, 4, 7, 10, ...
(ii) 18th term of the A.P. $\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2}, \ldots$
(iii) nth term of the A.P. $13,8,3,-2, \ldots$
Solution:
(i) $1,4,7,10 \ldots$
We have;
$a=1$
$d=4-1=3$
$a_{10}=a+(10-1) d \quad\left[a_{n}=a+(n-1) d\right]$
$=a+9 d$
$=1+9 \times 3$
$=28$
(ii) $\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2} \ldots$
We have;
$a=\sqrt{2}$
$d=3 \sqrt{2}-\sqrt{2}=2 \sqrt{2}$
$a_{18}=a+(18-1) d \quad\left[a_{n}=a+(n-1) d\right]$
$=a+17 d$
$=\sqrt{2}+17(2 \sqrt{2})$
$=\sqrt{2}+34 \sqrt{2}$
$=35 \sqrt{2}$
(iii) 13, 8, 3, −2...
We have:
$a=13$
$d=8-13=-5$
$a_{n}=a+(n-1) d$
$=13+(n-1)(-5)$
$=13-5 n+5$
$=18-5 n$