Fill in the blanks in each of the following so as to make the statement true:
(i) 1 m3 = .........cm3
(ii) 1 litre = ....... cubic decimetre
(iii) 1 kl = ....... m3
(iv) The volume of a cube of side 8 cm is ........
(v) The volume of a wooden cuboid of length 10 cm and breadth 8 cm is 4000 cm3. The height of the cuboid is ........ cm.
(vi) 1 cu.dm = ........ cu. mm
(vii) 1 cu. km = ........ cu. m
(viii) 1 litre = ........ cu. cm
(ix) 1 ml = ........ cu. cm
(x) 1 kl = ........ cu. dm = ........ cu. cm.
(i) $1 \mathrm{~m}^{3}=1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$
$=100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm} \quad(\because 1 \mathrm{~m}=100 \mathrm{~cm})$
$=1000000 \mathrm{~cm}^{3}$
$=10^{6} \mathrm{~cm}^{3}$
(ii) $1 \mathrm{~L}=\frac{1}{1000} \mathrm{~m}^{3}$
$=\frac{1}{1000} 1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$
$=\frac{1}{1000} \times 10 \mathrm{dm} \times 10 \mathrm{dm} \times 10 \mathrm{dm}$
$=1 \mathrm{dm}^{3}$
(iii) $1 \mathrm{~kL}=1000 \mathrm{~L}$
$=1 \mathrm{~m}^{3}\left(1000 \mathrm{~L}=1 \mathrm{~m}^{3}\right)$
(iv) Volume of a cube of side $8 \mathrm{~cm}=(\text { side })^{3}=8^{3}=512 \mathrm{~cm}^{3}$
(v) Lenght of the wooden cuboid $=10 \mathrm{~cm}$
Breadth $=8 \mathrm{~cm}$
Its volume $=4000 \mathrm{~cm}^{3}$
Suppose that the height of the cuboid is $h \mathrm{~cm} .$
Then, volume of the cuboid $=$ length $\times$ breadth $\times$ height
$\Rightarrow 4000=10 \times 8 \times h$
$\Rightarrow 4000=80 \times h$
$\Rightarrow h=\frac{4000}{80}=50 \mathrm{~cm}$
(vi) $1 \mathrm{cu} \mathrm{dm}=1 \mathrm{dm} \times 1 \mathrm{dm} \times 1 \mathrm{dm}$
$=100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 100 \mathrm{~mm}$
$=1000000 \mathrm{~mm}^{3}$
$=10^{6} \mathrm{cu} \mathrm{mm}$
(vii) $1 \mathrm{cu} \mathrm{km}=1 \mathrm{~km} \times 1 \mathrm{~km} \times 1 \mathrm{~km}$
$=1000 \mathrm{~m} \times 1000 \mathrm{~m} \times 1000 \mathrm{~m}(\because 1 \mathrm{~km}=1000 \mathrm{~m})$
$=1000000000 \mathrm{~m}^{3}$
$=10^{9} \mathrm{cu} \mathrm{m}$
(viii) $1 \mathrm{~L}=\frac{1}{1000} \mathrm{~m}^{3}$
$=\frac{1}{1000} \times 1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$
$=\frac{1}{1000} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm} \quad(\because 1 \mathrm{~m}=100 \mathrm{~cm})$
$=1000 \mathrm{~cm}^{3}$
$=10^{3} \mathrm{cu} \mathrm{cm}$
(ix) $1 \mathrm{~mL}=\frac{1}{1000} \times 1 \mathrm{~L}=\frac{1}{1000} \times \frac{1}{1000} \mathrm{~m}^{3}$
$=\frac{1}{1000} \times \frac{1}{1000} \times 1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$
$=\frac{1}{1000} \times \frac{1}{1000} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm} \quad(\because 1 \mathrm{~m}=100 \mathrm{~cm})$
$=1 \mathrm{cu} \mathrm{cm}$
(x) $1 \mathrm{~kL}=1000 \mathrm{~L}=1000 \times \frac{1}{1000} \mathrm{~m}^{3}=1 \mathrm{~m}^{3}$
$=1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$
$=10 \mathrm{dm} \times 10 \mathrm{dm} \times 10 \mathrm{dm} \quad(\because 1 \mathrm{~m}=10 \mathrm{dm})$
$=1000 \mathrm{cu} \mathrm{dm}$
$=1000 \times 10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm} \quad(\because 1 \mathrm{dm}=10 \mathrm{~cm})$
$=1000000 \mathrm{~cm}^{3}$
$=10^{6} \mathrm{cu} \mathrm{cm}$