Fill in the blanks:
(i) $-4 \times \frac{7}{9}=\frac{7}{9} \times \ldots \ldots$
(ii) $\frac{5}{11} \times \frac{-3}{8}=\frac{-3}{8} \times \ldots . . .$
(iii) $\frac{1}{2} \times\left(\frac{3}{4}+\frac{-5}{12}\right)=\frac{1}{2} \times \ldots . . .+\ldots \times \frac{-5}{12}$
(iv) $\frac{-4}{5} \times\left(\frac{5}{7}+\frac{-8}{9}\right)=\left(\frac{-4}{5} \times \ldots\right) \times \frac{-8}{9}$
(i) $-4$
$\mathrm{x} \times \mathrm{y}=\mathrm{y} \times \mathrm{x}$ (commutativity)
(ii) $\frac{5}{11}$
$\mathrm{x} \times \mathrm{y}=\mathrm{y} \times \mathrm{x}$ (commutativity)
(iii) $\frac{3}{4} ; \frac{1}{2}$
$\mathrm{x} \times(\mathrm{y}+\mathrm{z})=\mathrm{x} \times \mathrm{y}+\mathrm{x} \times \mathrm{z}$ (distributivity of multiplication over addition)
(iv) $\frac{5}{7}$
$\mathrm{x} \times(\mathrm{y} \times \mathrm{z})=(\mathrm{x} \times \mathrm{y}) \times \mathrm{z}(a$ ssociativity of multiplication $)$