Fill in the blanks.
(i) $7 \frac{1}{2} \%$ of Rs $1200=$
(ii) $240 \mathrm{~mL}$ is ........ \% of $3 \mathrm{~L}$.
(iii) If $x \%$ of 35 is 42 , then $x=$
(iv) $\frac{12}{5}=\ldots \ldots \ldots . \%$
(v) $120=(\ldots \ldots \ldots) \%$ of 80 .
(i) $7 \frac{1}{2} \%$ of Rs $1200=\left(\frac{15}{2} \%\right.$ of Rs 1200$)$
$=\operatorname{Rs}\left(\frac{15}{2} \times \frac{1}{100} \times 1200\right)$
$=\operatorname{Rs} 90$
Hence, $7 \frac{1}{2} \%$ of Rs $1200=$ Rs 90
(ii) Required percentage $=\left(\frac{240}{3 \times 1000} \times 100\right) \%=8 \%$
Hence, $240 \mathrm{ml}$ is $8 \%$ of $3 \mathrm{~L}$.
(iii) $(\mathrm{x} \%$ of 35$)=42$
$\Rightarrow\left(35 \times \frac{x}{100}\right)=42$
$\Rightarrow \frac{35 x}{100}=42$
$\Rightarrow x=\left(42 \times \frac{100}{35}\right)$
$\Rightarrow x=120 \%$
$\therefore$ If $\mathrm{x} \%$ of 35 is 42, then $\mathrm{x}=120 \%$.
(iv) $\left(\frac{12}{5} \times 100\right) \%=240 \%$
Hence, $\frac{12}{5}=240 \%$
(v) Let the required number be $\mathrm{x}$. Then, we have:
$120=x \%$ of 80
$\Rightarrow\left(80 \times \frac{x}{100}\right)=120$
$\quad \Rightarrow \frac{80 x}{100}=120$
$\quad \Rightarrow x=\left(120 \times \frac{100}{80}\right)$
$\quad \Rightarrow x=150 \%$
$\therefore 120=150 \%$ of 80