Figure 15.18 shows a sector of a circle of radius r cm containing an angle
(i) $\theta=\frac{360}{\theta}\left(\frac{25}{r}-1\right)$
(ii) $A=25 r-r^{2}$
It is given that the radius of circle is $r \mathrm{~cm}$ and angle $\angle A O B=\theta^{\circ}$.
(i) We know that the arc length l of a sector of an angle θ in a circle of radius r is
$l=\frac{\theta}{360^{\circ}} \times 2 \pi r$
Perimeter of sector $A O B=O B+O A+\operatorname{arc}$ length $A B$
Now we substitute the value of OB, OA and l to find the perimeter of sector AOB,
Perimeter of sector $A O B=r+r+\frac{\theta}{360^{\circ}} \times 2 \pi r$
$50=2 r\left(1+\frac{\pi \theta}{360^{\circ}}\right)$
$\frac{25}{r}=1+\frac{\pi \theta}{360^{\circ}}$
$\frac{\pi \theta}{360^{\circ}}=\frac{25}{r}-1$
$\theta=\frac{360^{\circ}}{\pi}\left(\frac{25}{r}-1\right)$
(ii) We know that area A of the sector at an angle θ in the circle of radius r is
$A=\frac{\theta}{360^{\circ}} \times \pi r^{2}$. Thus
Area of sector $A O B=\frac{\theta}{360^{\circ}} \pi r^{2}$
Substituting the value of θ,
$A=\frac{\frac{360^{\circ}}{\pi}\left(\frac{25}{r}-1\right)}{360^{\circ}} \pi r^{2}$
$A=\left(\frac{25}{r}-1\right) r^{2}$
$A=25 r-r^{2}$