Question:
Factorize the following:
2a4b4 − 3a3b5 + 4a2b5
Solution:
The greatest common factor of the terms $2 a^{4} b^{4},-3 a^{3} b^{5}$ and $4 a^{2} b^{5}$ of the expression $2 a^{4} b^{4}-3 a^{3} b^{5}+4 a^{2} b^{5}$ is $a^{2} b^{4}$.
Now,
$2 a^{4} b^{4}=a^{2} b^{4} \times 2 a^{2}$
$-3 a^{3} b^{5}=a^{2} b^{4} \times-3 a b$
$4 a^{2} b^{5}=a^{2} b^{4} \times 4 b$
Hence, (2a4b4 - 3a3b5 + 4a2b5) can be factorised as [a2b4(2a2 - 3ab + 4b)].