Question:
Factorize each of the following quadratic polynomials by using the method of completing the square:
x2 + 12x + 20
Solution:
$x^{2}+12 x+20$
$=x^{2}+12 x+\left(\frac{12}{2}\right)^{2}-\left(\frac{12}{2}\right)^{2}+20 \quad\left[\right.$ Adding and subtracting $\left(\frac{12}{2}\right)^{2}$, that is, $\left.6^{2}\right]$
$=x^{2}+12 x+6^{2}-6^{2}+20$
$=(x+6)^{2}-16 \quad[$ Completing the square $]$
$=(x+6)^{2}-4^{2}$
$=[(x+6)-4][(x+6)+4]$
$=(x+6-4)(x+6+4)$
$=(x+2)(x+10)$