Question:
Factorize each of the following quadratic polynomials by using the method of completing the square:
p2 − 10q + 21
Solution:
$p^{2}-10 q+21$
$=\mathrm{q}^{2}-10 \mathrm{q}+\left(\frac{10}{2}\right)^{2}-\left(\frac{10}{2}\right)^{2}+21 \quad$ Adding and subtracting $\left(\frac{10}{2}\right)^{2}$, that is, $\left.5^{2}\right]$
$=\mathrm{q}^{2}-2 \times \mathrm{q} \times 5+5^{2}-5^{2}+21$
$=(\mathrm{q}-5)^{2}-4 \quad[$ Completing the square $]$
$=(q-5)^{2}-2^{2}$
$=[(q-5)-2][(q-5)+2]$
$=(q-5-2)(q-5+2)$
$=(q-7)(q-3)$