Question:
Factorize each of the following quadratic polynomials by using the method of completing the square:
a2 + 2a − 3
Solution:
$a^{2}+2 a-3$
$=a^{2}+2 a+\left(\frac{2}{2}\right)^{2}-\left(\frac{2}{2}\right)^{2}-3 \quad\left[\right.$ Adding and subtracting $\left(\frac{2}{2}\right)^{2}$, that is, $\left.1^{2}\right]$
$=a^{2}+2 a+1^{2}-1^{2}-3$
$=(a+1)^{2}-4 \quad[$ Completing the square $]$
$=(a+1)^{2}-2^{2}$
$=[(a+1)-2][(a+1)+2]$
$=(a+1-2)(a+1+2)$
$=(a-1)(a+3)$