Question:
Factorize each of the following quadratic polynomials by using the method of completing the square:
a2 − 14a − 51
Solution:
$a^{2}-14 a-51$
$=a^{2}-14 a+\left(\frac{14}{2}\right)^{2}-\left(\frac{14}{2}\right)^{2}-51 \quad\left[\right.$ Adding and subtracting $\left(\frac{14}{2}\right)^{2}$, that is, $\left.7^{2}\right]$
$=a^{2}-14 a+7^{2}-7^{2}-51$
$=(a-7)^{2}-100 \quad[$ Completing the square $]$
$=(a-7)^{2}-10^{2}$
$=[(a-7)-10][(a-7)+10]$
$=(a-7-10)(a-7+10)$
$=(a-17)(a+3)$