Question:
Factorize each of the following algebraic expression:
a2 + 14a + 48
Solution:
To factorise $\mathrm{a}^{2}+14 \mathrm{a}+48$, we will find two numbers $\mathrm{p}$ and $\mathrm{q}$ such that $\mathrm{p}+\mathrm{q}=14$ and pq $=48$.
Now,
$8+6=14$
and
$8 \times 6=48$
Splitting the middle term 14a in the given quadratic as $8 a+6 a$, we get:
$\mathrm{a}^{2}+14 \mathrm{a}+48=\mathrm{a}^{2}+8 \mathrm{a}+6 \mathrm{a}+48$
$=\left(\mathrm{a}^{2}+8 \mathrm{a}\right)+(6 \mathrm{a}+48)$
$=\mathrm{a}(\mathrm{a}+8)+6(\mathrm{a}+8)$
$=(\mathrm{a}+6)(\mathrm{a}+8)$