Question:
Factorize each of the following algebraic expression:
a2 + 2a − 3
Solution:
To factorise $\mathrm{a}^{2}+2 \mathrm{a}-3$, we will find two numbers $\mathrm{p}$ and $\mathrm{q}$ such that $\mathrm{p}+\mathrm{q}=2$ and $\mathrm{pq}=-3$.
Now,
$3+(-1)=2$
and
$3 \times(-1)=-3$
Splitting the middle term $2 \mathrm{a}$ in the given quadratic as $-\mathrm{a}+3 \mathrm{a}$, we get:
$a^{2}+2 a-3=a^{2}-a+3 a-3$
$=\left(a^{2}-a\right)+(3 a-3)$
$=a(a-1)+3(a-1)$
$=(a+3)(a-1)$