Question:
Factorize each of the following algebraic expression:
x2 − 4x − 21
Solution:
To factorise $\mathrm{x}^{2}-4 \mathrm{x}-21$, we will find two numbers $\mathrm{p}$ and $\mathrm{q}$ such that $\mathrm{p}+\mathrm{q}=-4$ and $\mathrm{pq}=-21$.
Now,
$3+(-7)=-4$
and
$3 \times(-7)=-21$
Splitting the middle term $-4 \mathrm{x}$ in the given quadratic as $-7 \mathrm{x}+3 \mathrm{x}$, we get:
$\mathrm{x}^{2}-4 \mathrm{x}-21=\mathrm{x}^{2}-7 \mathrm{x}+3 \mathrm{x}-21$
$=\left(\mathrm{x}^{2}-7 \mathrm{x}\right)+(3 \mathrm{x}-21)$
$=\mathrm{x}(\mathrm{x}-7)+3(\mathrm{x}-7)$
$=(\mathrm{x}+3)(\mathrm{x}-7)$