Question:
Factorize each of the following algebraic expression:
x2 + 14x + 45
Solution:
To factorise $\mathrm{x}^{2}+14 \mathrm{x}+45$, we will find two numbers $\mathrm{p}$ and $\mathrm{q}$ such that $\mathrm{p}+\mathrm{q}=14$ and $\mathrm{pq}=45$.
Now,
$9+5=14$
and
$9 \times 5=45$
Splitting the middle term $14 \mathrm{x}$ in the given quadratic as $9 \mathrm{x}+5 \mathrm{x}$, we get:
$\mathrm{x}^{2}+14 \mathrm{x}+45=\mathrm{x}^{2}+9 \mathrm{x}+5 \mathrm{x}+45$
$=\left(\mathrm{x}^{2}+9 \mathrm{x}\right)+(5 \mathrm{x}+45)$
$=\mathrm{x}(\mathrm{x}+9)+5(\mathrm{x}+9)$
$=(\mathrm{x}+5)(\mathrm{x}+9)$