Question:
Factorize each of the following algebraic expression:
40 + 3x − x2
Solution:
We have:
$40+3 x-x^{2}$
$\Rightarrow-\left(x^{2}-3 x-40\right)$
To factorise $\left(\mathrm{x}^{2}-3 \mathrm{x}-40\right)$, we will find two numbers $\mathrm{p}$ and $\mathrm{q}$ such that $\mathrm{p}+\mathrm{q}=-3$ and $\mathrm{pq}=-40$.
Now,
$5+(-8)=-3$
And
$5 \times(-8)=-40$
Splitting the middle term $-3 \mathrm{x}$ in the given quadratic as $5 \mathrm{x}-8 \mathrm{x}$, we get:
$40+3 x-x^{2}=-\left(x^{2}-3 x-40\right)$
$=-\left(x^{2}+5 x-8 x-40\right)$
$=-\left[\left(x^{2}+5 x\right)-(8 x+40)\right]$
$=-[x(x+5)-8(x+5)]$
$=-(x-8)(x+5)$
$=(x+5)(-x+8)$