Question:
Factorize each of the following algebraic expression:
(a + 7)(a − 10) + 16
Solution:
(a + 7)(a − 10) + 16
$=a^{2}-10 a+7 a-70+16$
$=a^{2}-3 a-54$
To factorise $a^{2}-3 a-54$, we will find two numbers $p$ and $q$ such that $p+q=-3$ and $p q=-54$.
Now,
$6+(-9)=-3$
and
$6 \times(-9)=-54$
Splitting the middle term $-3 a$ in the given quadratic as $-9 a+6 a$, we get :
$a^{2}-3 a-54=a^{2}-9 a+6 a-54$
$=\left(a^{2}-9 a\right)+(6 a-54)$
$=a(a-9)+6(a-9)$
$=(a+6)(a-9)$