Question:
Factorize:
$2 \sqrt{2} a^{3}+16 \sqrt{2} b^{3}+c^{3}-12 a b c$
Solution:
$2 \sqrt{2} a^{3}+16 \sqrt{2} b^{3}+c^{3}-12 a b c=(\sqrt{2} a)^{3}+(2 \sqrt{2} b)^{3}+c^{3}-3 \times(\sqrt{2} a) \times(2 \sqrt{2} b) \times(c)$
$=(\sqrt{2} a+2 \sqrt{2} b+c)\left[(\sqrt{2} a)^{2}+(2 \sqrt{2} b)^{2}+c^{2}-(\sqrt{2} a) \times(2 \sqrt{2} b)-(2 \sqrt{2} b) \times(c)-(\sqrt{2} a) \times(c)\right]$
$=(\sqrt{2} a+2 \sqrt{2} b+c)\left(2 a^{2}+8 b^{2}+c^{2}-4 a b-2 \sqrt{2} b c-\sqrt{2} a c\right)$