Question:
Factorize:
$9(2 a-b)^{2}-4(2 a-b)-13$
Solution:
We have:
$9(2 a-b)^{2}-4(2 a-b)-13$
Let :
$(2 a-b)=p$
Thus, the given expression becomes
$9 p^{2}-4 p-13$
Now, we must split $(-4)$ into two numbers such that their sum is $(-4)$ and their product is $(-117)$.
Clearly, $-13+9=-4$ and $-13 \times 9=-117$.
$\therefore 9 p^{2}-4 p-13=9 p^{2}+9 p-13 p-13$
$=9 p(p+1)-13(p+1)$
$=(p+1)(9 p-13)$
Putting $p=(2 a-b)$, we get:
$9(2 a-b)^{2}-4(2 a-b)-13=[(2 a-b)+1][9(2 a-b)-13]$
$=(2 a-b+1)[18 a-9 b-13]$