Question:
Factorise
$a^{12}-b^{12}$
Solution:
$a^{12}-b^{12}$
$=\left(a^{6}+b^{6}\right)\left(a^{6}-b^{6}\right)$
$=\left[\left(a^{2}\right)^{3}+\left(b^{2}\right)^{3}\right]\left[\left(a^{3}\right)^{2}-\left(b^{3}\right)^{2}\right]$
$=\left[\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}-a^{2} b^{2}\right)\right]\left[\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)\right]$
$=\left[\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}-a^{2} b^{2}\right)\right]\left[(a-b)\left(a^{2}+b^{2}+a b\right)(a+b)\left(a^{2}+b^{2}-a b\right)\right]$
$=(a-b)\left(a^{2}+b^{2}+a b\right)(a+b)\left(a^{2}+b^{2}-a b\right)\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}-a^{2} b^{2}\right)$