Factorise:

Question:

Factorise:

$(a+2 b)^{2}+101(a+2 b)+100$

 

Solution:

$(a+2 b)^{2}+101(a+2 b)+100=(a+2 b)^{2}+100(a+2 b)+1(a+2 b)+100$

$=(a+2 b)[(a+2 b)+100]+1[(a+2 b)+100]$

$=[(a+2 b)+1][(a+2 b)+100]$

$=(a+2 b+1)(a+2 b+100)$

Hence, factorisation of $(a+2 b)^{2}+101(a+2 b)+100$ is $(a+2 b+1)(a+2 b+100)$

Leave a comment