Question:
Factorise:
(i) 24x3 − 36x2y
(ii) 10x3 − 15x2
(iii) 36x3y − 60x2y3z
Solution:
(i) H.C.F. of $24 x^{3}$ and $36 x^{2} y$ is $12 x^{2}$.
$\therefore 24 x^{3}-36 x^{2} y=12 x^{2}(2 x-3 y)$
(ii) H.C.F. of $10 x^{3}$ and $15 x^{2}$ is $5 x^{3}$
$\therefore 10 x^{3}-15 x^{2}=5 x^{2}(2 x-3)$
(iii) H.C.F. of $36 x^{3} y$ and $60 x^{2} y^{3} z$ is $12 x^{2} y$.
$\therefore 36 x^{3} y-60 x^{2} y^{3} z=12 x^{2} y\left(3 x-5 y^{2} z\right)$