Factorise:x2 − xz + xy − yz
By suitably arranging the terms:
$x^{2}-x z+x y-y z=x^{2}+x y-x z-y z$
$=\left(x^{2}+x y\right)-(x z+y z)$
$=x(x+y)-z(x+y)$
$=(x+y)(x-z)$
$\therefore x^{2}-x z+x y-y z=(x+y)(x-z)$
Leave a comment
All Study Material