Question:
Factorise:
(i) x3 − 3x2 + x − 3
(ii) 63x2y2 − 7
(iii) 1 − 6x + 9x2
(iv) 7x2 − 19x − 6
Solution:
(i) $x^{3}-3 x^{2}+x-3$
$=x^{2}(x-3)+1(x-3)$
$=\left(x^{2}+1\right)(x-3)$
(ii) $63 x^{2} y^{2}-7$
$=7\left(9 x^{2} y^{2}-1\right)$
$=7\left((3 x y)^{2}-(1)^{2}\right)$ [according to the formula $a^{2}-b^{2}=(a+b)(a-b)$ ]
$=7(3 x y+1)(3 x y-1)$
(iii) $1-6 x+9 x^{2}$
$=9 x^{2}-6 x+1$
$=9 x^{2}-3 x-3 x+1$
$=3 x(3 x-1)-1(3 x-1)$
$=(3 x-1)(3 x-1)$
$=(3 x-1)^{2}$
$($ iv $) 7 x^{2}-19 \mathrm{x}-6$
$=7 x^{2}-21 x+2 x-6$
$=7 x(x-3)+2(x-3)$
$=(7 x+2)(x-3)$