Question:
Express the given complex number in the form a + ib: $\left(\frac{1}{3}+3 i\right)^{3}$
Solution:
$\left(\frac{1}{3}+3 i\right)^{3}=\left(\frac{1}{3}\right)^{3}+(3 i)^{3}+3\left(\frac{1}{3}\right)(3 i)\left(\frac{1}{3}+3 i\right)$
$=\frac{1}{27}+27 i^{3}+3 i\left(\frac{1}{3}+3 i\right)$
$=\frac{1}{27}+27(-i)+i+9 i^{2} \quad\left[i^{3}=-i\right]$
$=\frac{1}{27}-27 i+i-9 \quad\left[i^{2}=-1\right]$
$=\left(\frac{1}{27}-9\right)+i(-27+1)$
$=\frac{-242}{27}-26 i$