Express the following in the form $\frac{p}{q}$, where p and q are integers and q ≠ 0. <br/> <br/>(i) $0 . \overline{6}$<br/> <br/> (ii) $0.4 \overline{7}$ <br/> <br/>(iii) $0 . \overline{001}$
Solution:
(i) $0 . \overline{6}=0.666 \ldots$
Let $x=0.666 \ldots$
$10 x=6.666 \ldots$
$10 x=6+x$
$9 x=6$
$x=\frac{2}{3}$
(ii) $0 . \overline{47}=0.4777 \ldots . .$
$=\frac{4}{10}+\frac{0.777}{10}$
$10 x=7.777 \ldots$
$10 x=7+x$
$x=\frac{7}{9}$
$\frac{4}{10}+\frac{0.777 \ldots}{10}=\frac{4}{10}+\frac{7}{90}$
$=\frac{36+7}{90}=\frac{43}{90}$
(iii) $0 . \overline{001}=0.001001 \ldots$
Let $x=0.001001 \ldots$
$1000 x=1.001001 \ldots$
$1000 x=1+x$
$999 x=1$
$x=\frac{1}{999}$
(i) $0 . \overline{6}=0.666 \ldots$
Let $x=0.666 \ldots$
$10 x=6.666 \ldots$
$10 x=6+x$
$9 x=6$
$x=\frac{2}{3}$
(ii) $0 . \overline{47}=0.4777 \ldots . .$
$=\frac{4}{10}+\frac{0.777}{10}$
$10 x=7.777 \ldots$
$10 x=7+x$
$x=\frac{7}{9}$
$\frac{4}{10}+\frac{0.777 \ldots}{10}=\frac{4}{10}+\frac{7}{90}$
$=\frac{36+7}{90}=\frac{43}{90}$
(iii) $0 . \overline{001}=0.001001 \ldots$
Let $x=0.001001 \ldots$
$1000 x=1.001001 \ldots$
$1000 x=1+x$
$999 x=1$
$x=\frac{1}{999}$