Express the following complex in the form r(cos θ + i sin θ):
(i) $1+i \tan a$
(ii) $\tan \alpha-i$
(iii) $1-\sin \alpha+i \cos \alpha$
(iv) $\frac{1-i}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$
(i) Let $\mathrm{z}=1+i \tan \alpha$
$\because \tan \alpha$ is periodic with period $\pi .$ So, let us take
$\alpha \in[0, \pi / 2) \cup(\pi / 2, \pi]$
Case I :
When $\alpha \in[0, \pi / 2)$
$z=1+i \tan \alpha$
$\Rightarrow|\mathrm{z}|=\sqrt{1+\tan ^{2} \alpha}$
$=|\sec \alpha|$ $\left[\because 0<\alpha<\frac{\pi}{2}\right]$
$=\sec \alpha$
Let $\beta$ be an acute angle given by $\tan \beta=\left|\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right|$
$\tan \beta=|\tan \alpha|$
$=\tan \alpha$
$\Rightarrow \beta=\alpha$
As $z$ lies in the first quadrant. Therefore, $\arg (z)=\beta=\alpha$Thus, $z$ in the polar form is given by
Thus, $z$ in the polar form is given by
$z=\sec \alpha(\cos \alpha+i \sin \alpha)$
Case II :
$z=1+i \tan \alpha$
$\Rightarrow|z|=\sqrt{1+\tan ^{2} \alpha}$
$=|\sec \alpha|$ $\left[\because \frac{\pi}{2}<\alpha<\pi\right]$
$=-\sec \alpha$
Let $\beta$ be an acute angle given by $\tan \beta=\left|\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right|$
$\tan \beta=|\tan \alpha|$
$=-\tan \alpha$
$\Rightarrow \tan \beta=\tan (\pi-\alpha)$
$\Rightarrow \beta=\pi-\alpha$
As, $z$ lies in the fourth quadrant.
$\therefore \arg (z)=-\beta=\alpha-\pi$
Thus, $z$ in the polar form is given by
$z=-\sec \alpha\{\cos (\alpha-\pi)+i \sin (\alpha-\pi)\}$
(ii) Let $\mathrm{z}=\tan \alpha-i$
$\because \tan \alpha$ is periodic with period $\pi$. So, let us take
$\alpha \in[0, \pi / 2) \cup(\pi / 2, \pi]$
Case I :
$z=\tan \alpha-\mathrm{i}$
$\Rightarrow|z|=\sqrt{\tan ^{2}+1}$
$=|\sec \alpha|$
$=\sec \alpha$
$\left[\because 0<\alpha<\frac{\pi}{2}\right]$
Let $\beta$ be an acute angle given by $\tan \beta=\left|\frac{\operatorname{Im}(\mathrm{z})}{\operatorname{Re}(\mathrm{z})}\right|$
$\tan \beta=\frac{1}{|\tan \alpha|}$
$=|\cot \alpha|$
$=\cot \alpha$
$=\tan \left(\frac{\pi}{2}-\alpha\right)$
$\Rightarrow \beta=\frac{\pi}{2}-\alpha$
We can see that $\operatorname{Re}(z)>0$ and $\operatorname{Im}(z)<0$. So, $z$ lies in the fourth quadrant.
$\therefore \arg (z)=-\beta=\alpha-\frac{\pi}{2}$
Thus, $z$ in the polar form is given by
$z=\sec \alpha\left\{\cos \left(\alpha-\frac{\pi}{2}\right)+i \sin \left(\alpha-\frac{\pi}{2}\right)\right\}$
Case II :
$z=\tan \alpha-i$
$\Rightarrow|z|=\sqrt{\tan ^{2}+1}$
$=|\sec \alpha|$ $\left[\because \frac{\pi}{2}<\alpha<\pi\right]$
$=-\sec \alpha$
Let $\beta$ be an acute angle given by $\tan \beta=\left|\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right|$
$\tan \beta=\frac{1}{|\tan \alpha|}$
$=|\cot \alpha|$
$=-\cot \alpha$
$=\tan \left(\alpha-\frac{\pi}{2}\right)$
$\Rightarrow \beta=\alpha-\frac{\pi}{2}$
We can see that $\operatorname{Re}(z)<0$ and $\operatorname{Im}(z)<0$. So, $z$ lies in the third quadrant.
$\therefore \arg (z)=\pi+\beta=\frac{\pi}{2}+\alpha$
Thus, $z$ in the polar form is given by
$z=-\sec \alpha\left\{\cos \left(\frac{\pi}{2}+\alpha\right)+i \sin \left(\frac{\pi}{2}+\alpha\right)\right\}$
(iii) Let $\mathrm{z}=(1-\sin \alpha)+i \cos \alpha$.
$\because$ sine and cosine functions are periodic functions with period $2 \pi$.
So, let us take $\alpha \in[0,2 \pi]$
Now, $z=1-\sin \alpha+i \cos \alpha$
$\Rightarrow|z|=\sqrt{(1-\sin \alpha)^{2}+\cos ^{2} \alpha}=\sqrt{2-\sin \alpha}=\sqrt{2} \sqrt{1-\sin \alpha}$
$\Rightarrow|z|=\sqrt{2} \sqrt{\left(\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right)^{2}}=\sqrt{2}\left|\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right|$
Let $\beta$ be an acute angle given by $\tan \beta=\frac{|\operatorname{Im}(z)|}{|\operatorname{Re}(z)|}$. Then,
$\tan \beta=\frac{|\cos \alpha|}{|1-\sin \alpha|}=\left|\frac{\cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\alpha}{2}}{\left(\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right)^{2}}\right|=\left|\frac{\cos \frac{\alpha}{2}+\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}}\right|$
$\Rightarrow \tan \beta=\left|\frac{1+\tan \frac{\alpha}{2}}{1-\tan \frac{\alpha}{2}}\right|=\left|\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right|$
Case I: When $0 \leq \alpha<\frac{\pi}{2}$
In this case, we have,
$\cos \frac{\alpha}{2}>\sin \frac{\alpha}{2}$ and $\frac{\pi}{4}+\frac{\alpha}{2} \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$
$\Rightarrow|z|=\sqrt{2}\left(\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right)$
and $\tan \beta=\left|\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right|=\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)$
$\Rightarrow \beta=\frac{\pi}{4}+\frac{\alpha}{2}$
Clearly, $z$ lies in the first quadrant. Therefore, $\arg (z)=\frac{\pi}{4}+\frac{\alpha}{2}$
Hence, the polar form of $z$ is
$\sqrt{2}\left(\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right)\left\{\cos \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)+i \sin \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right\}$
Case II : When $\frac{\pi}{2}<\alpha<\frac{3 \pi}{2}$
In this case, we have,
$\cos \frac{\alpha}{2}<\sin \frac{\alpha}{2}$ and $\frac{\pi}{4}+\frac{\alpha}{2} \in\left(\frac{\pi}{2}, \pi\right)$
$\Rightarrow|z|=\sqrt{2}\left(\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right)=-\sqrt{2}\left(\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right)$
and $\tan \beta=\left|\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right|=-\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)=\tan \left\{\pi-\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right\}=\tan \left(\frac{3 \pi}{4}-\frac{\alpha}{2}\right)$
$\Rightarrow \beta=\frac{3 \pi}{4}-\frac{\alpha}{2}$
Clearly, $z$ lies in the fourth quadrant. Therefore, $\arg (z)=-\beta=-\left(\frac{3 \pi}{4}-\frac{\alpha}{2}\right)=\frac{\alpha}{2}-\frac{3 \pi}{4}$
Hence, the polar form of $z$ is
$-\sqrt{2}\left(\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right)\left\{\cos \left(\frac{\alpha}{2}-\frac{3 \pi}{4}\right)+i \sin \left(\frac{\alpha}{2}-\frac{3 \pi}{4}\right)\right\}$
Case III : When $\frac{3 \pi}{2}<\alpha<2 \pi$
In this case, we have,
$\cos \frac{\alpha}{2}<\sin \frac{\alpha}{2}$ and $\frac{\pi}{4}+\frac{\alpha}{2} \in\left(\pi, \frac{5 \pi}{4}\right)$
$\Rightarrow|z|=\sqrt{2}\left|\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right|=-\sqrt{2}\left(\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right)$
and $\tan \beta=\left|\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right|=\tan \left(\frac{\pi}{4}+\frac{\alpha}{2}\right)=-\tan \left\{\pi-\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right\}=\tan \left(\frac{\alpha}{2}-\frac{3 \pi}{4}\right)$
$\Rightarrow \beta=\frac{\alpha}{2}-\frac{3 \pi}{4}$
Clearly, $z$ lies in the first quadrant. Therefore, $\arg (z)=\beta=\frac{\alpha}{2}-\frac{3 \pi}{4}$
Hence, the polar form of $z$ is
$-\sqrt{2}\left(\cos \frac{\alpha}{2}-\sin \frac{\alpha}{2}\right)\left\{\cos \left(\frac{\alpha}{2}-\frac{3 \pi}{4}\right)+i \sin \left(\frac{\alpha}{2}-\frac{3 \pi}{4}\right)\right\}$
$($ iv $)$ Let $z=\frac{1-i}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$
$=\frac{1-i}{\frac{1}{2}+i \frac{\sqrt{3}}{3}}$
$=\frac{2-2 i}{1+i \sqrt{3}} \times \frac{1-i \sqrt{3}}{1-i \sqrt{3}}$
$=\frac{2-2 i-2 \sqrt{3} i+2 \sqrt{3} i^{2}}{1+3}$
$=\frac{2-2 \sqrt{3}-2 i(1+\sqrt{3})}{4}$
$=\frac{(1-\sqrt{3})+i(-1-\sqrt{3})}{2}$
$=\frac{(1-\sqrt{3})}{2}+i \frac{(-1-\sqrt{3})}{2}$
Now, $z=\frac{(1-\sqrt{3})}{2}+i \frac{(-1-\sqrt{3})}{2}$
$\Rightarrow|z|=\sqrt{\left(\frac{1-\sqrt{3}}{2}\right)^{2}+\left(\frac{-1-\sqrt{3}}{2}\right)^{2}}$
$=\sqrt{\left(\frac{1+3-2 \sqrt{3}}{4}\right)+\left(\frac{1+3+2 \sqrt{3}}{4}\right)}$
$=\sqrt{\frac{8}{4}}$
$=\sqrt{2}$
Let $\beta$ be an acute angle given by $\tan \beta=\frac{|\operatorname{Im}(z)|}{|\operatorname{Re}(z)|}$. Then,
$\tan \beta=\frac{\left|\frac{1+\sqrt{3}}{2}\right|}{\left|\frac{1-\sqrt{3}}{2}\right|}=\left|\frac{1+\sqrt{3}}{1-\sqrt{3}}\right|=\left|\frac{\tan \frac{\pi}{4}+\tan \frac{\pi}{3}}{1-\tan \frac{\pi}{4} \tan \frac{\pi}{3}}\right|$
$\Rightarrow \tan \beta=\left|\tan \left(\frac{\pi}{4}+\frac{\pi}{3}\right)\right|=\left|\tan \frac{7 \pi}{12}\right|$
$\Rightarrow \beta=\frac{7 \pi}{12}$
Clearly, $z$ lies in the fourth quadrant. Therefore, $\arg (z)=-\frac{7 \pi}{12}$
Hence, the polar form of $z$ is
$\sqrt{2}\left(\cos \frac{7 \pi}{12}-\sin \frac{7 \pi}{12}\right)$