Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., $a^{m} \times a^{n}=a^{m+n}$ and $\left(a^{m}\right)^{n}=a^{m n}$
We have:
$\left(x^{2}\right)^{3} \times(2 x) \times(-4 x) \times 5$
$=\left(x^{6}\right) \times(2 x) \times(-4 x) \times 5$
$=\{2 \times(-4) \times 5\} \times\left(x^{6} \times x \times x\right)$
$=\{2 \times(-4) \times 5\} \times\left(x^{6+1+1}\right)$
$=-40 x^{8}$
$\therefore\left(x^{2}\right)^{3} \times(2 x) \times(-4 x) \times 5=-40 x^{8}$
Substituting x = 1 in LHS, we get:
LHS $=\left(x^{2}\right)^{3} \times(2 x) \times(-4 x) \times 5$
$=\left(1^{2}\right)^{3} \times(2 \times 1) \times(-4 \times 1) \times 5$
$=1^{6} \times 2 \times(-4) \times 5$
$=1 \times 2 \times(-4) \times 5$
$=-40$
Putting x = 1 in RHS, we get:
$\mathrm{RHS}=-40 x^{8}$
$=-40(1)^{8}$
$=-40 \times 1$
$=-40$
$\because L H S=R H S$ for $x=1$; therefore, the result is correct
Thus, the answer is $-40 x^{8}$.