Express each of the following product as a monomials and verify the result for x = 1, y = 2:
$\left(\frac{2}{5} a^{2} b\right) \times\left(-15 b^{2} a c\right) \times\left(-\frac{1}{2} c^{2}\right)$
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., $a^{m} \times a^{n}=a^{m+n}$.
We have:
$\left(\frac{2}{5} a^{2} b\right) \times\left(-15 b^{2} a c\right) \times\left(-\frac{1}{2} c^{2}\right)$
$=\left\{\frac{2}{5} \times(-15) \times\left(-\frac{1}{2}\right)\right\} \times\left(a^{2} \times a\right) \times\left(b \times b^{2}\right) \times\left(c \times c^{2}\right)$
$=\left\{\frac{2}{5} \times(-15) \times\left(-\frac{1}{2}\right)\right\} \times\left(a^{2+1}\right) \times\left(b^{1+2}\right) \times\left(c^{1+2}\right)$
$=3 a^{3} b^{3} c^{3}$
$\because$ The expression doesn't consist of the variables $x$ and $y$.
$\therefore$ The result cannot be verified for $x=1$ and $y=2$
Thus, the answer is $3 a^{3} b^{3} c^{3}$.