Question:
Express each of the following in the form (a + ib):
$\frac{(3+4 i)}{(4+5 i)}$
Solution:
Given: $\frac{3+4 i}{4+5 i}$
Now, rationalizing
$=\frac{3+4 i}{4+5 i} \times \frac{4-5 i}{4-5 i}$
$=\frac{(3+4 i)(4-5 i)}{(4+5 i)(4-5 i)}$
Now, we know that
$(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
So, eq. (i) become
$=\frac{(3+4 i)(4-5 i)}{(4)^{2}-(5 i)^{2}}$
$=\frac{3(4)+3(-5 i)+4 i(4)+4 i(-5 i)}{16-25 i^{2}}$
$=\frac{12-15 i+16 i-20 i^{2}}{16-25(-1) \quad\left[\because i^{2}=-1\right]}$
$=\frac{12+i-20(-1)}{16+25}$
$=\frac{12+i+20}{41}$
$=\frac{32+i}{41}$
$=\frac{32}{41}+\frac{1}{41} i$