Question:
Express each of the following in the form (a + ib):
$\frac{(5+\sqrt{2} i)}{(1-\sqrt{2} i)}$
Solution:
Given: $\frac{5+\sqrt{2} i}{1-\sqrt{2} i}$
Now, rationalizing
$=\frac{5+\sqrt{2} i}{1-\sqrt{2} i} \times \frac{1+\sqrt{2} i}{1+\sqrt{2} i}$
$=\frac{(5+\sqrt{2} i)(1+\sqrt{2} i)}{(1-\sqrt{2} i)(1+\sqrt{2} i)} \ldots$ (i)
Now, we know that,
$(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
So, eq. (i) become
$=\frac{(5+\sqrt{2} i)(1+\sqrt{2} i)}{(1)^{2}-(\sqrt{2} i)^{2}}$
$=\frac{5(1)+5(\sqrt{2} i)+\sqrt{2} i(1)+\sqrt{2} i(\sqrt{2} i)}{1-2 i^{2}}$
$=\frac{5+5 \sqrt{2} i+\sqrt{2} i+2 i^{2}}{1-2(-1)}\left[\because \mathrm{i}^{2}=-1\right]$
$=\frac{5+6 i \sqrt{2}+2(-1)}{1+2}$
$=\frac{3+6 i \sqrt{2}}{3}$
$=\frac{3(1+2 i \sqrt{2})}{3}$
$=1+2 \mathrm{i} \sqrt{2}$