Express each of the following decimals in the form $\frac{p}{q}$ :
(i) $0 . \overline{4}$
(ii) $0 . \overline{37}$
(iii) $0 . \overline{54}$
(iv) $0 . \overline{621}$
(v) $125 . \overline{3}$
(vi) $4 . \overline{7}$
(vii) $0 . \overline{47}$
(i) Let $x=0 . \overline{4}$
$\Rightarrow x=0.44444 \ldots$
$10 x=4.444 \ldots$
$\Rightarrow 10 x=4+x$
$\Rightarrow 9 x=4$
$\Rightarrow x=\frac{4}{9}$
(ii) Let $x=0 . \overline{37}$
$\Rightarrow x=0.373737 \ldots$
$\Rightarrow 100 x=37.3737 \ldots$
$\Rightarrow 100 x=37+0.3737 \ldots$
$\Rightarrow 100 x=37+x$
$\Rightarrow 99 x=37$
$\Rightarrow x=\frac{37}{99}$
(iii) Let $x=0 . \overline{54}$
$\Rightarrow x=0.545454 \ldots$
$\Rightarrow 100 x=54.5454 \ldots$
$\Rightarrow 100 x=54+0.5454 \ldots$
$\Rightarrow 100 x=54+x$
$\Rightarrow 99 x=54$
$\Rightarrow x=\frac{54}{99}=\frac{6}{11}$
(iv) Let $x=0 . \overline{621}$
$\Rightarrow x=0.621621621 \ldots$
$\Rightarrow 1000 x=621.621621 \ldots$
$\Rightarrow 1000 x=621+0.621621 \ldots$
$\Rightarrow 1000 x=621+x$
$\Rightarrow 999 x=621$
$\Rightarrow x=\frac{621}{999}=\frac{207}{333}$
$\Rightarrow x=\frac{23}{37}$
(v) Let $x=125 . \overline{3}$
$\Rightarrow x=125+0 . \overline{3}$
$\Rightarrow x=125+\frac{1}{3}\left(\because 0 . \overline{3}=\frac{1}{3}\right)$
$\Rightarrow x=\frac{375+1}{3}$
$\Rightarrow x=\frac{376}{3}$
(vi) Let $x=4 . \overline{7}$
$x=4+0 . \overline{7}$
Let $y=0 . \overline{7}=0.777 \ldots$
$\Rightarrow 10 y=7+0.777 \ldots$
$\Rightarrow 10 y=7+y$
$\Rightarrow y=\frac{7}{9}$
Therefore,
$x=4+\frac{7}{9}=\frac{43}{9}$
(vii) Let $x=0.4 \overline{7}$
$\Rightarrow 10 x=4+0 . \overline{7}$
Since, $0 . \overline{7}=\frac{7}{9}$
Therefore,
$\Rightarrow 10 x=4+\frac{7}{9}=\frac{43}{9}$
$\Rightarrow x=\frac{43}{90}$