Express each of the following as a rational number of the form

Question:

Express each of the following as a rational number of the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$.

(i) $2^{-3}$

(ii) $(-4)^{-2}$

(iii) $\frac{1}{3^{-2}}$

(iv) $\left(\frac{1}{2}\right)^{-5}$

(v) $\left(\frac{2}{3}\right)^{-2}$

Solution:

We know that $\mathrm{a}^{-\mathrm{n}}=\frac{1}{\mathrm{a}^{\mathrm{n}}}$. Therefore,

(i) $2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$

(ii) $(-4)^{-2}=\frac{1}{(-4)^{2}}=\frac{1}{16}$

(iii) $\frac{1}{3^{-2}}=3^{2}=9$

(iv) $\left(\frac{1}{2}\right)^{-5}=2^{5}=32$

(v) $\left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$ 

Leave a comment