Express each of the following as a fraction in simplest form:
(i) $0 . \overline{8}$
(ii) $2 . \overline{4}$
(iii) $0 . \overline{24}$
(iv) $0.1 \overline{2}$
(v) $2.2 \overline{4}$
(vi) $0 . \overline{365}$
(i) Let $x=0 . \overline{8}$
∴ x = 0.888 ...(1)
10x = 8.888 ...(2)
On subtracting equation (1) from (2), we get
$9 x=8 \Rightarrow x=\frac{8}{9}$
$\therefore 0 . \overline{8}=\frac{8}{9}$
(ii) Let $x=2 . \overline{4}$
∴ x = 2.444 ...(1)
10x = 24.444 ...(2)
On subtracting equation (1) from (2), we get
$9 x=22 \Rightarrow x=\frac{22}{9}$
$\therefore 2 \cdot \overline{4}=\frac{22}{9}$
(iii) Let $x=0 . \overline{24}$
∴ x = 0.2424 ...(1)
100x = 24.2424 ...(2)
On subtracting equation (1) from (2), we get
$99 x=24 \Rightarrow x=\frac{8}{33}$
$\therefore 0 . \overline{24}=\frac{8}{33}$
(iv) Let $x=0.1 \overline{2}$
$10 x=1.22222 \ldots \quad \ldots(1)$
$100 x=12.22222 \ldots \quad \ldots(2)$
On subtracting equation (1) from (2), we get
$100 x-10 x=(12.22222 \ldots)-(1.22222 \ldots)$
$\Rightarrow 90 x=11$
$\Rightarrow x=\frac{11}{90}$
(v) Let $x=2.2 \overline{4}$
∴ x = 2.2444 ...(1)
10x = 22.444 ...(2)
100x = 224.444 ...(3)
On subtracting equation (2) from (3), we get
$90 x=202 \Rightarrow x=\frac{202}{90}=\frac{101}{45}$
Hence, $2.2 \overline{4}=\frac{101}{45}$
(vi) Let $x=0 . \overline{365}$
∴ x = 0.3656565 ...(1)
10x = 3.656565 ...(2)
1000x = 365.656565 ...(3)
On subtracting (2) from (3), we get
$990 x=362 \Rightarrow x=\frac{362}{990}=\frac{181}{495}$
Hence, $0 . \overline{365}=\frac{181}{495}$