Question:
Express $2 . \overline{36}+0.23$ as a fraction in simplest form.
Solution:
Given: $2 . \overline{36}+0 . \overline{23}$
Let
$x=2 . \overline{36} \quad \ldots(\mathrm{i})$
$\begin{array}{ll}y=0 . \overline{23} & \ldots \text { (ii) }\end{array}$
First we take $x$ and convert it into $\frac{p}{q}$
100x = 236.3636... ...(iii)
Subtracting (i) from (iii) we get
$99 x=234$
$\Rightarrow x=\frac{234}{99}$
Similarly, multiply y with 100 as there are 2 decimal places which are repeating themselves.
$100 y=23.2323 \ldots$(iv)
Subtracting (ii) from (iv) we get
$99 y=23$
$\Rightarrow y=\frac{23}{99}$
Adding x and y we get
$2 . \overline{36}+0 . \overline{23}=x+y=\frac{234}{99}+\frac{23}{99}=\frac{257}{99}$