Explain why $7 \times 11 \times 13+13$ and $7 \times 6 \times 5 \times 4$ $\times 3 \times 2 \times 1+5$ are composite numbers.
Question.
Explain why $7 \times 11 \times 13+13$ and $7 \times 6 \times 5 \times 4$ $\times 3 \times 2 \times 1+5$ are composite numbers.
Explain why $7 \times 11 \times 13+13$ and $7 \times 6 \times 5 \times 4$ $\times 3 \times 2 \times 1+5$ are composite numbers.
Solution:
(i) $7 \times 11 \times 13+13=(7 \times 11+1) \times 13$
$=(77+1) \times 13$
$=78 \times 13=(2 \times 3 \times 13) \times 13$
So, $78=2 \times 3 \times 13$
$78 \times 13=2 \times 3 \times 13^{2}$
Since, $7 \times 11 \times 13+13$ can be expressed as a product of primes, therefore, it is a composite number.
(ii) $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$
$=(7 \times 6 \times 4 \times 3 \times 2 \times 1+1) \times 5$
$=1009 \times 5$
Since, $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$ can be expressed as a product of primes, therfore it is a composite number.
(i) $7 \times 11 \times 13+13=(7 \times 11+1) \times 13$
$=(77+1) \times 13$
$=78 \times 13=(2 \times 3 \times 13) \times 13$
So, $78=2 \times 3 \times 13$
$78 \times 13=2 \times 3 \times 13^{2}$
Since, $7 \times 11 \times 13+13$ can be expressed as a product of primes, therefore, it is a composite number.
(ii) $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$
$=(7 \times 6 \times 4 \times 3 \times 2 \times 1+1) \times 5$
$=1009 \times 5$
Since, $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$ can be expressed as a product of primes, therfore it is a composite number.