Examine whether the following numbers are rational or irrational.
(i) $3+\sqrt{3}$
(ii) $\sqrt{7}-2$
(iii) $\sqrt[3]{5} \times \sqrt[3]{25}$
(iv) $\sqrt{7} \times \sqrt{343}$
(v) $\sqrt{\frac{13}{117}}$
(vi) $\sqrt{8} \times \sqrt{2}$
(i) Let us assume, to the contrary that $3+\sqrt{3}$ is rational.
Then, $3+\sqrt{3}=\frac{p}{q}$, where $p$ and $q$ are coprime and $q \neq 0$.
$\Rightarrow \sqrt{3}=\frac{p}{q}-3$
$\Rightarrow \sqrt{3}=\frac{p-3 q}{q}$
Since, p and q are are integers.
$\Rightarrow \frac{p-3 q}{q}$ is rational.
So, $\sqrt{3}$ is also rational.
But this contradicts the fact that $\sqrt{3}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $3+\sqrt{3}$ is rational.
Hence, $3+\sqrt{3}$ is irrational.
(ii) Let us assume, to the contrary, that $\sqrt{7}-2$ is rational.
Then, $\sqrt{7}-2=\frac{p}{q}$, where $p$ and $q$ are coprime and $q \neq 0$.
$\Rightarrow \sqrt{7}=\frac{p}{q}+2$
$\Rightarrow \sqrt{7}=\frac{p+2 q}{q}$
Since, p and q are are integers.
$\Rightarrow \frac{p+2 q}{q}$ is rational.
So, $\sqrt{7}$ is also rational.
But this contradicts the fact that $\sqrt{7}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $\sqrt{7}-2$ is rational.
Hence, $\sqrt{7}-2$ is irrational.
(iii) As, $\sqrt[3]{5} \times \sqrt[3]{25}$
$=\sqrt[3]{5 \times 25}$
$=\sqrt[3]{125}$
$=5$, which is an integer
Hence, $\sqrt[3]{5} \times \sqrt[3]{25}$ is rational.
(iv) As, $\sqrt{7} \times \sqrt{343}$
$=\sqrt{7 \times 343}$
$=\sqrt{2401}$
$=49$, which is an integer
Hence, $\sqrt{7} \times \sqrt{343}$ is rational.
(v) As, $\sqrt{\frac{13}{117}}=\sqrt{\frac{1}{9}}=\frac{1}{3}$, which is rational
Hence, $\sqrt{\frac{13}{117}}$ is rational.
(vi) As, $\sqrt{8} \times \sqrt{2}$
$=\sqrt{8 \times 2}$
$=\sqrt{16}$
$=4$, which is an integer
Hence, $\sqrt{8} \times \sqrt{2}$ is rational.