Examine, whether the following numbers are rational or irrational:
(i) $\sqrt{7}$
(ii) $\sqrt{4}$
(iii) $2+\sqrt{3}$
(iv) $\sqrt{3}+\sqrt{2}$
(v) $\sqrt{3}+\sqrt{5}$
(vi) $(\sqrt{2}-2)^{2}$
(vii) $(2-\sqrt{2})(2+\sqrt{2})$
(viii) $(\sqrt{2}+\sqrt{3})^{2}$
(ix) $\sqrt{5}-2$
(x) $\sqrt{23}$
(xi) $\sqrt{225}$
(xii) $0.3796$
(xiii) $7.478478$
(xiv) $1.101001000100001$
(i) Let $x=\sqrt{7}$
Therefore,
$x=2.645751311064 \ldots$
It is non-terminating and non-repeating
Hence $\sqrt{7}$ is an irrational number
(ii) Let $x=\sqrt{4}$
Therefore,
$x=2$
It is terminating.
Hence $\sqrt{4}$ is a rational number.
(iii) Let $x=2+\sqrt{3}$ be the rational
Squaring on both sides
$\Rightarrow x^{2}=(2+\sqrt{3})^{2}$
$\Rightarrow x^{2}=4+3+4 \sqrt{3}$
$\Rightarrow x^{2}=7+4 \sqrt{3}$
$\Rightarrow x^{2}-7=4 \sqrt{3}$
$\Rightarrow \frac{x^{2}-7}{4}=\sqrt{3}$
Since, x is rational
$\Rightarrow x^{2}$ is rational
$\Rightarrow x^{2}-7$ is rational
$\Rightarrow \frac{x^{2}-7}{4}$ is rational
$\Rightarrow \sqrt{3}$ is rational
But, $\sqrt{3}$ is irrational
So, we arrive at a contradiction.
Hence $2+\sqrt{3}$ is an irrational number
(iv) Let $x=\sqrt{3}+\sqrt{2}$ be the rational number
Squaring on both sides, we get
$\Rightarrow x^{2}=(\sqrt{3}+\sqrt{2})^{2}$
$\Rightarrow x^{2}=3+2+2 \sqrt{6}$
$\Rightarrow x^{2}=5+2 \sqrt{6}$
$\Rightarrow x^{2}-5=2 \sqrt{6}$
$\Rightarrow \frac{x^{2}-5}{2}=\sqrt{6}$
Since, x is a rational number
$\Rightarrow x^{2}$ is rational number
$\Rightarrow x^{2}-5$ is rational number
$\Rightarrow \frac{x^{2}-5}{2}$ is rational number
$\Rightarrow \sqrt{6}$ is rational number
But $\sqrt{6}$ is an irrational number
So, we arrive at contradiction
Hence $\sqrt{3}+\sqrt{2}$ is an irrational number
(v) Let $x=\sqrt{3}+\sqrt{5}$ be the rational number
Squaring on both sides, we get
$\Rightarrow x^{2}=(\sqrt{3}+\sqrt{5})^{2}$
$\Rightarrow x^{2}=3+5+2 \sqrt{15}$
$\Rightarrow x^{2}=8+2 \sqrt{15}$
$\Rightarrow x^{2}-8=2 \sqrt{15}$
$\Rightarrow \frac{x^{2}-8}{2}=\sqrt{15}$
Now, x is rational number
$\Rightarrow x^{2}$ is rational number
$\Rightarrow x^{2}-8$ is rational number
$\Rightarrow \frac{x^{2}-8}{2}$ is rational number
$\Rightarrow \sqrt{15}$ is rational number
But $\sqrt{15}$ is an irrational number
So, we arrive at a contradiction
Hence $\sqrt{3}+\sqrt{5}$ is an irrational number
(vi) Let $x=(\sqrt{2}-2)^{2}$ be a rational number.
$x=(\sqrt{2}-2)^{2}$
$\Rightarrow x=2+4-4 \sqrt{2}$
$\Rightarrow x=6-4 \sqrt{2}$
$\Rightarrow \frac{x-6}{-4}=\sqrt{2}$
Since, x is rational number,
$\Rightarrow x-6$ is a rational nu8mber
$\Rightarrow \frac{x-6}{-4}$ is a rational number
$\Rightarrow \sqrt{2}$ is a rational number
But we know that $\sqrt{2}$ is an irrational number, which is a contradiction
So $(\sqrt{2}-\sqrt{2})^{2}$ is an irrational number
(vii) Let $x=(2-\sqrt{2})(2+\sqrt{2})$
$\Rightarrow x=(2)^{2}-(\sqrt{2})^{2} \quad\left\{\operatorname{As}(a+b)(a-b)=a^{2}-b^{2}\right\}$
$\Rightarrow x=4-2$
$\Rightarrow x=2$
So $(2-\sqrt{2})(2+\sqrt{2})$ is a rational number
(viii) Let $x=(\sqrt{2}+\sqrt{3})^{2}$ be rational number
Using the formula $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow x=(\sqrt{2})^{2}+(\sqrt{3})^{2}+2(\sqrt{2})(\sqrt{3})$
$\Rightarrow x=2+3+2 \sqrt{6}$
$\Rightarrow x=5+2 \sqrt{6}$
$\Rightarrow \frac{x-5}{2}$ is a rational number
$\Rightarrow \sqrt{6}$ is a rational number
But we know that $\sqrt{6}$ is an irrational number
So, we arrive at a contradiction
So $(\sqrt{2}+\sqrt{3})^{2}$ is an irrational number.
(ix) Let $x=\sqrt{5}-2$ be the rational number
Squaring on both sides, we get
$x=\sqrt{5}-2$
$x^{2}=(\sqrt{5}-2)^{2}$
$x^{2}=25+4-4 \sqrt{5}$
$x^{2}-29=-4 \sqrt{5}$
$\frac{x^{2}-29}{-4}=\sqrt{5}$
Now, x is rational
$x^{2}$ is rational.
So, $x^{2}-29$ is rational
$\frac{x^{2}-29}{-4}=\sqrt{5}$ is rational.
But, $\sqrt{5}$ is irrational. So we arrive at contradiction
Hence $x=\sqrt{5}-2$ is an irrational number
(x) Let
$x=\sqrt{23}$
$x=4.79583 \ldots$
It is non-terminating or non-repeating
Hence $\sqrt{23}$ is an irrational number
(xi) Let $x=\sqrt{225}$
$\Rightarrow x=15$
Hence $\sqrt{225}$ is a rational number
(xii) Given $0.3796$.
It is terminating
Hence it is a rational number
(xiii) Given number $x=7.478478 \ldots$
$\Rightarrow x=7 . \overline{478}$
It is repeating
Hence it is a rational number
(xiv) Given number is $x=1.1010010001 \ldots$
It is non-terminating or non-repeating
Hence it is an irrational number