Question:
Examine the continuity of the function f (x) = x3 + 2x2 – 1 at x = 1
Solution:
We know that, y = f(x) will be continuous at x = a if,
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a^{+}} f(x)$
Given: $f(x)=x^{3}+2 x^{2}-1$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0}(1+h)^{3}+2(1+h)^{2}-1=1+2-1=2$
$\lim _{x \rightarrow 1} f(x)=(1)^{3}+2(1)^{2}-1$
$=1+2-1=2$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{\rightarrow}(1+h)^{3}+2(1+h)^{2}-1$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=2$
Hence, $f(x)$ is continuous at $x=1$.