Evaluate the integral:
$\int \sqrt{3+2 x-x^{2}} d x$
Key points to solve the problem:
- Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \mathrm{dx}=\mathrm{f}(\mathrm{x}) \int \mathrm{g}(\mathrm{x}) \mathrm{dx}-\int \mathrm{f}^{\prime}(\mathrm{x})\left(\int \mathrm{g}(\mathrm{x}) \mathrm{dx}\right) \mathrm{dx}$
- To solve the integrals of the form: $\int \sqrt{a x^{2}+b x+c} d x$ after applying substitution and integration by parts we have direct formulae as described below:
$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
Let, $I=\int \sqrt{3+2 x-x^{2}} d x$
$\therefore I=\int \sqrt{3-\left(x^{2}-2(1) x\right)} d x=\int \sqrt{3-\left(x^{2}-2(1) x+1\right)+1} d x$
Using $a^{2}-2 a b+b^{2}=(a-b)^{2}$
We have:
$I=\int \sqrt{4-(x-1)^{2}} d x=\int \sqrt{2^{2}-(x-1)^{2}} d x$
As I match with the form: $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\therefore I=\frac{x-1}{2} \sqrt{4-(x-1)^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x-1}{2}\right)+C$
$\Rightarrow I=\frac{1}{2}(x-1) \sqrt{3+2 x-x^{2}}+2 \sin ^{-1}\left(\frac{x-1}{2}\right)+C$