Evaluate the integral:
$\int \sqrt{2 x-x^{2}} d x$
Key points to solve the problem:
- Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int f(x) g(x) d x=f(x) \int g(x) d x-\int f^{\prime}(x)\left(\int g(x) d x\right) d x$
- To solve the integrals of the form: $\int \sqrt{a x^{2}+b x+c} d x$ after applying substitution and integration by parts we have direct formulae as described below:
$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
Let, $I=\int \sqrt{2 x-x^{2}} d x$
$\therefore I=\int \sqrt{-\left(x^{2}-2(1) x\right)} d x=\int \sqrt{1^{2}-\left(x^{2}-2(1) x+(1)^{2}\right)} d x$
Using $a^{2}-2 a b+b^{2}=(a-b)^{2}$
We have:
$I=\int \sqrt{1^{2}-(x-a)^{2}} d x=\int \sqrt{(1)^{2}-(x-1)^{2}} d x$
As I match with the form: $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\therefore I=\frac{x-1}{2} \sqrt{(1)^{2}-(x-1)^{2}}+\frac{1^{2}}{2} \sin ^{-1}\left(\frac{x-1}{1}\right)+C$
$\Rightarrow 1=\frac{1}{2}(x-1) \sqrt{2 x-x^{2}}+\frac{1}{2} \sin ^{-1}(x-1)+C$