Evaluate the integral:

Question:

Evaluate the integral:

$\int \sqrt{3-2 x-2 x^{2}} d x$

Solution:

Key points to solve the problem:

- Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{f}(\mathrm{x}) \int \mathrm{g}(\mathrm{x}) \mathrm{dx}-\int \mathrm{f}^{\prime}(\mathrm{x})\left(\int \mathrm{g}(\mathrm{x}) \mathrm{d} \mathrm{x}\right) \mathrm{dx}$

- To solve the integrals of the form: $\int \sqrt{a x^{2}+b x+c} d x$ after applying substitution and integration by parts we have direct formulae as described below:

$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$

$\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$

$\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$

Let, $I=\int \sqrt{3-2 x-2 x^{2}} d x$

$\therefore I=\int \sqrt{3-2\left(x^{2}+2\left(\frac{1}{2}\right) x\right)} d x=\int \sqrt{3-2\left(x^{2}+2\left(\frac{1}{2}\right) x+\left(\frac{1}{2}\right)^{2}\right)+2\left(\frac{1}{2}\right)^{2}} d x$

Using $a^{2}+2 a b+b^{2}=(a+b)^{2}$

We have:

$I=\int \sqrt{\frac{7}{4}-2\left(x+\frac{1}{2}\right)^{2}} d x=\int \sqrt{2} \sqrt{\left(\frac{\sqrt{7}}{2}\right)^{2}-\left(x+\frac{1}{2}\right)^{2}} d x$

As I match with the form: $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$

$\therefore I=\sqrt{2}\left\{\frac{x+\frac{1}{2}}{2} \sqrt{\left(\frac{\sqrt{7}}{2}\right)^{2}-\left(x+\frac{1}{2}\right)^{2}}+\frac{\frac{7}{4}}{2} \sin ^{-1}\left(\frac{x+\frac{1}{2}}{\frac{\sqrt{7}}{2}}\right)\right\}+C$

$\Rightarrow I=\frac{1}{4}(2 x+1) \sqrt{2\left\{\left(\frac{\sqrt{7}}{2}\right)^{2}-\left(x+\frac{1}{2}\right)^{2}\right\}}+\frac{7 \sqrt{2}}{8} \sin ^{-1}\left(\frac{2 x+1}{\sqrt{7}}\right)+C$

$\Rightarrow I=\frac{1}{4}(2 x+1) \sqrt{3-2 x-2 x^{2}}+\frac{7 \sqrt{2}}{8} \sin ^{-1}\left(\frac{2 x+1}{\sqrt{7}}\right)+C$

Leave a comment