Evaluate the integral:
$\int \sqrt{x^{2}+x+1} d x$
Key points to solve the problem:
- Such problems require the use of the method of substitution along with a method of integration by parts. By the method of integration by parts if we have $\int \mathrm{f}(\mathrm{x}) g(\mathrm{x}) \mathrm{dx}=\mathrm{f}(\mathrm{x}) \int \mathrm{g}(\mathrm{x}) \mathrm{dx}-\int \mathrm{f}^{\prime}(\mathrm{x})\left(\int \mathrm{g}(\mathrm{x}) \mathrm{d} \mathrm{x}\right) \mathrm{dx}$
- To solve the integrals of the form: $\int \sqrt{a x^{2}+b x+c} d x$ after applying substitution and integration by parts we have direct formulae as described below:
$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
Let, $I=\int \sqrt{\left(x^{2}+x+1\right)} d x$
$\therefore I=\int \sqrt{x^{2}+2\left(\frac{1}{2}\right) x+\left(\frac{1}{2}\right)^{2}+1-\left(\frac{1}{2}\right)^{2}} d x$
Using $a^{2}+2 a b+b^{2}=(a+b)^{2}$
We have:
$I=\int \sqrt{\left(x+\frac{1}{2}\right)^{2}+1-\frac{1}{4}} d x=\int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x$
As I match with the form:
$\int \sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}} \mathrm{dx}=\frac{\mathrm{x}}{2} \sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}+\frac{\mathrm{a}^{2}}{2} \log \left|\mathrm{x}+\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}\right|+\mathrm{C}$
$\therefore I=\frac{\left(x+\frac{1}{2}\right)}{2} \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right|+C$
$\therefore I=\frac{\left(x+\frac{1}{2}\right)}{2} \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{\left(\frac{\sqrt{2}}{2}\right)^{2}}{2} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right|+C$
$\Rightarrow I=\frac{1}{4}(2 x+1) \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right|+C$
$\Rightarrow I=\frac{1}{4}(2 x+1) \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|+C$