Question: Evaluate the Given limit: $\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a}, a+b+c \neq 0$
Solution:
$\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a}=\frac{a(1)^{2}+b(1)+c}{c(1)^{2}+b(1)+a}$
$=\frac{a+b+c}{a+b+c}$
$=1$ $[a+b+c \neq 0]$