Question:
Evaluate the Given limit: $\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$
Solution:
At $x=0$, the value of the given function takes the form $\infty-\infty$.
Now,
$\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$
$=\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{\cos x}{\sin x}\right)$
$=\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{\sin x}\right)$
$=\lim _{x \rightarrow 0} \frac{\left(\frac{1-\cos x}{x}\right)}{\left(\frac{\sin x}{x}\right)}$
$=\frac{\lim _{x \rightarrow 0} \frac{1-\cos x}{x}}{\lim _{x \rightarrow 0} \frac{\sin x}{x}}$
$=\frac{0}{1} \quad\left[\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0\right.$ and $\left.\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$
$=0$