Evaluate the following using suitable identities: <br/><br/>(i) $(99)^{3}$ <br/><br/>(ii) $(102)^{3}$ <br/><br/>(iii) $(998)^{3}$
Solution:
It is known that,
$(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
and $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
(i) $(99)^{3}=(100-1)^{3}$
$=(100)^{3}-(1)^{3}-3(100)(1)(100-1)$
$=1000000-1-300(99)$
$=1000000-1-29700$
$=970299$
(ii) $(102)^{3}=(100+2)^{3}$
$=(100)^{3}+(2)^{3}+3(100)(2)(100+2)$
$=1000000+8+600(102)$
$=1000000+8+61200$
$=1061208$
(iii) $(998)^{3}=(1000-2)^{3}$
$=(1000)^{3}-(2)^{3}-3(1000)(2)(1000-2)$
$=1000000000-8-6000(998)$
$=1000000000-8-5988000$
$=1000000000-5988008$
$=994011992$
It is known that,
$(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
and $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
(i) $(99)^{3}=(100-1)^{3}$
$=(100)^{3}-(1)^{3}-3(100)(1)(100-1)$
$=1000000-1-300(99)$
$=1000000-1-29700$
$=970299$
(ii) $(102)^{3}=(100+2)^{3}$
$=(100)^{3}+(2)^{3}+3(100)(2)(100+2)$
$=1000000+8+600(102)$
$=1000000+8+61200$
$=1061208$
(iii) $(998)^{3}=(1000-2)^{3}$
$=(1000)^{3}-(2)^{3}-3(1000)(2)(1000-2)$
$=1000000000-8-6000(998)$
$=1000000000-8-5988000$
$=1000000000-5988008$
$=994011992$