Question:
Evaluate the following limits:
$\lim _{x \rightarrow a} \frac{(\cos x-\cos a)}{(x-a)}$
Solution:
$=\lim _{x \rightarrow a} \frac{(\cos x-\cos a)}{(x-a)}$
$=\lim _{x \rightarrow a} \frac{-2 \times \sin \left(\frac{x+a}{2}\right) \sin \left(\frac{x-a}{2}\right)}{x-a}\left[\because \cos x-\cos a=-2 \times \sin \frac{x+a}{2} \sin \frac{x-a}{2}\right]$
$=\lim _{x \rightarrow a} \sin \frac{x+a}{2} \times-\frac{\sin \left(\frac{x-a}{2}\right)}{\frac{(x-a)}{2}}$
$=-1 \times \lim _{x \rightarrow a} \sin \frac{x+a}{2}\left[\because \lim _{x \rightarrow a} \frac{\sin \theta}{\theta}=1\right]$
$=-1 \times \sin \frac{(a+a)}{2}$
$=-1 \times \sin \frac{2 a}{2}$
$=-\sin (a)$
$\therefore \lim _{x \rightarrow a} \frac{(\cos x-\cos a)}{(x-a)}=-\sin a$