Question:
Evaluate the following limits:
$\lim _{x \rightarrow 0} \frac{\sin (\pi-x)}{\pi(\pi-x)}$
Solution:
$=\lim _{x \rightarrow 0} \frac{\sin (\pi-x)}{\pi(\pi-x)}$
$=\lim _{x \rightarrow 0} \frac{\sin x}{\pi(\pi-x)} \times \frac{x}{x}$
$=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \lim _{x \rightarrow 0} \frac{\pi-(\pi-x)}{\pi(\pi-x)}$
$=1 \times \lim _{x \rightarrow 0}\left(\frac{1}{\pi-x}-\frac{1}{\pi}\right)$
$=\frac{1}{\pi}-\frac{1}{\pi}$
$=0$
$\therefore \lim _{x \rightarrow 0} \frac{\sin (\pi-x)}{\pi(\pi-x)}=0$