Question:
Evaluate the following limits:
$\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\pi}{2}-x\right) \tan x$
Solution:
$=\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\pi}{2}-x\right) \tan x$
$=-1 \times \lim _{y \rightarrow 0} y \tan \left(y+\frac{\pi}{2}\right)\left[x-\frac{\pi}{2}=y\right]$
$=-1 \times \lim _{y \rightarrow 0} y \cot y \times-1$
$=\lim _{y \rightarrow 0} \frac{y}{\tan y}$
$=1$
$\therefore \lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\pi}{2}-x\right) \tan x=1$